Approximate Solutions to Factored Markov Decision Processes via
Greedy Search in the Space of Finite State Controllers

Kee-Eung Kim, Thomas L. Dean

Department of Computer Science
Brown University
Providence, RI 02912
{kek,tld }@cs.brown.edu

Abstract

In stochastic planning problems formulated as factored
Markov decision processes (MDPs), also called dy-
namic belief network MDPs (DBN-MDPs) (Boutilier,
Dean, & Hanks 1999), finding the best policy (or con-
ditional plan) is NP-hard. One of the difficulties comes
from the fact that the number of conditionals required
to specify the policy can grow to be exponential in
the size of the representation for the MDP. Several re-
cent algorithms have focused on finding an approxi-
mate policy by restricting the representation of condi-
tionals using decision trees. We propose an alternative
policy representation for Factored MDPs in terms of
finite-state machine (FSM) controllers. Since practi-
cally speaking we are forced to limit the number of
conditionals, we claim that there is a benefit to be had
in using FSM controllers given that these controllers
can use their internal state to maintain context infor-
mation that might otherwise require a large conditional
table or decision tree. Although the optimal policy
might not be representable as a finite-state controller
with a fixed amount of memory, we will be satisfied
with finding a “good” policy; to that end, we derive a
stochastic greedy-search algorithm based on recent de-
velopments in reinforcement learning (Baird & Moore
1999) and then demonstrate its performance in some
example domains.

Introduction

Although remarkable advances in deterministic plan-
ning problems have been made and efficient algorithms
are used in practice, stochastic planning problems for
complex domains with large state and action spaces re-
main very hard to tackle. One part of the difficulty
is due to the fact that, although such problems can
be compactly represented as factored Markov decision
processes (MDPs), also called dynamic belief network
MDPs (DBN-MDPs) (Boutilier, Dean, & Hanks 1999),
the best policy might be impractical to represent. Most
of the existing algorithms are based on @-functions.
Formal definitions will follow, but roughly speaking, the
@-functions determine the quality of executing actions

Copyright (© 1999, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Nicolas Meuleau
MIT Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

nm@ai.mit.edu

in particular states. Several existing algorithms for fac-
tored MDPs rely approximating -functions to reduce
the size of the representation — the hope is that these
approximate @-functions will ignore small differences
among the values associated with action / state pairs
thereby compressing the representation of the resulting
policy. If these differences are indeed small the resulting
policy should be close to optimal.

Most of the current algorithms assume a decision-
tree representation for policies; intermediate nodes rep-
resent important aspects (or features) of the current
state and leaf nodes determine which action to exe-
cute given those features are present in the current
state (Boutilier, Dearden, & Goldszmidt 1995). The re-
sulting class of policies are said to be stationary which
is also in the class of history independent or Markov
policies. Note, however, that by limiting the features
used to condition actions and thereby restricting the
size of the resulting policies, we also reduce our ability
to discriminate among states. What this means is that
the underlying dynamics (which is in part determined
by the actions selected according to the agent’s policy)
becomes non-Markovian. Within the space of all poli-
cies that have the same capability with respect to dis-
criminating among states, the best policy may require
remembering features from previous states, i.e., the op-
timal policy may be history dependent. This observa-
tion is the primary motivation for the work described
in this paper.

One way to represent the history is to use memory of
past states. We could of course enhance the agent’s abil-
ity to discriminate among states by having it remem-
ber features from previous states. However, this simply
transforms the problem into an equivalent problem with
an enlarged set of features exacerbating the curse of di-
mensionality in the process. An alternative approach
that has been pursued in solving partially observ-
able MDPs (POMDPs) is to use finite-state machine
(FSM) controllers to represent policies (Hansen 1998;
Meuleau et al. 1999). The advantage of this approach
is that such controllers can “remember” features for an
indefinite length of time without the overhead of re-
membering all of the intervening features. Search is
carried out in the space of policies that have a finite

amount of memory.

It is important to note than in a (fully observable)
MDP, the state contains all of the information required
to choose the optimal action. Unfortunately, the cur-
rent state may not encode this information in the most
useful form and decoding the information may require
considerable effort. In some domains, however, there is
information available in previous states that is far more
useful (in the sense of requiring less computational ef-
fort to decode for purposes of action selection) than
that available in the present state. For example, in New
York city it is often difficult to determine that gridlock
has occurred, is likely to occur, or is likely to persist
even if you have all of the information available to the
Department of Transportation Traffic Control Center;
however, if on entering the city around 3:00pm you note
that traffic at the George Washington Bridge is backed
up two miles at the toll booths, and you find yourself
still in the city around 5:00pm, your best bet is to relax,
do some shopping, have dinner in the city, and gener-
ally avoid spending several frustrating hours fuming in
your car on the Triborough Bridge. We will return to
a more formal example in a later section.

There are recent algorithms for reinforcement learn-
ing that assume the use of finite-state controllers for
representing policies (Hansen 1998; Meuleau et al.
1999). These algorithms are intended to solve POMDPs
and non-Markov decision problems. We argue that,
as described in the previous paragraphs, the policy we
search for should be history dependent if the problem is
given as an MDP with a very large state space and the
space of the policies determined by the agent’s ability
to discriminate among states does not cover the optimal
memoryless policy.

In this paper, we adopt the approach of searching
directly in the space of policies (Singh, Jaakkola, &
Jordan 1994) as opposed to searching in the space of
value functions, finding the optimal value function or
a good approximation thereof and constructing a pol-
icy from this value function. Finding the best FSM
policy is a hard problem and we side step some of the
computational difficulties by using a stochastic greedy
search algorithm (also adapted from work in reinforce-
ment learning (Baird & Moore 1999)) to find a locally
optimal finite state controller.

The inspiration for our approach came from the work
of Meuleau et al. (1999) that restricted attention to the
space of finite-state controllers and applied the VAPS
family of algorithms (Baird & Moore 1999) to search-
ing in the space of such policies. Our contribution is to
show that the same basic ideas can be applied to solv-
ing factored MDPs with very large state spaces. There
is nothing in principle preventing us from combining
our work with that of Meuleau et al. to solve factored
POMDPs in which a domain model is supplied. In this
work, we see the availability of a factored domain model
as an important advantage to be exploited.

The paper is organized as follows: We begin by
formalizing stochastic planning problems as factored

e @ Pr(RI+1‘R’() Pr(Ut+1‘Ut) Pr(WHl‘Rt'Ut'Wt)
R U, W,
S A Ay

Pr(HCq|HC) Pr(WC,;|WC)) U, 00
t—@9 PN o e
@ 10 0.9 10 0.0

t t+1

Figure 1: Compact representation of a robot action,
GETCOFFEE.

Figure 2: Compact representation of the reward func-
tion for the toy robot problem.

MDPs. We define the class of FSM policies that consti-
tutes the space of possible solutions to the given prob-
lem. We then describe a local greedy search algorithm
and investigate its performance by summarizing experi-
mental results on examples of stochastic planning prob-
lems.

Factored MDPs

In this paper, we consider factored MDPs as input prob-
lems that generalize on propositional STRIPS prob-
lems. The factored MDP can be represented as a
graphical model. An example is shown in Figure 1,
which describes a toy robot planning problem. The
ovals represent fluents in the domain. In this case,
R, U, W,HC,WC are binary variables representing, re-
spectively, the weather outside being rainy, the robot
having an umbrella, the robot being wet, the robot
holding coffee, and the robot’s boss wanting coffee. The
connections between the fluents at time step t 4+ 1 and
t determine the dynamics. The conditional probability
distribution governing state transitions is represented in
terms of a set of conditional probability distributions,
one for each fluent, shown as a tree in the right side of
the Figure 1. The product of these distributions deter-
mines the state-to-state transition probability function.
Since the dynamics of the state space depends on the
action, we specify a graph representing the dynamics for
each action. The figure shows the graph for one particu-
lar action, GETCOFFEE. To complete the specification,
the reward function is also provided in a decision tree
format. In Figure 2, we show an example of the reward
function associated with the toy robot problem.

Definition 1 (Factored MDP) A factored MDP
M = {X,A,T, R} is defined as

e X = [X1,...,X,] is the set of fluents that de-
fines the state space. We use the lowercase letter
F = [z1,...,2,] to denote a particular instantiation
of the fluents.

e A is the set of actions.

e T is the set conditional probability distributions, one
for each action:

n
T(&,a, Fe41) = [] Plaierrlpalzi i), a)
i=1
where pa(X;:41) denotes the set of parent vari-
ables of X;iy1 in the graphical model. Note that
Viapa(Xi,t+1) g {Xl,ta e 7Xn,t}-

e R: X — R is the reward function. Without loss of
generality, we define the reward to be determined by

both state and action (R : XxA—).
a

We define an ezplicit randomized history-independent

policy m as a function from X x A to [0,1]. In words, =
defines a probability distribution over actions given that
the system is in a specific state. Note that the size of the
table for storing the probability distribution is exponen-
tial in the number of fluents (hence the term explicit).
Every Factored MDP is associated with an objective
function. In this paper, we restrict our attention to
one particular objective function, infinite horizon ez-
pected cumulative discounted reward with discount rate
0 < v < 1. To compare the quality of policies, we define
the following functions.

Definition 2 (Value Functions and ()-Functions)
The value function of the explicit history-independent
policy m is defined as

V(@) =Y w(d a)[R(F a) + 7 Y T(F a,2)V" ()],

a z!

The @Q-function of the policy w is defined as

Q"(#,a) = R(F,a) +7 Y _T(&a,a")V"(a').
&
O
In words, V™(#) denotes the expectation of total dis-
counted reward throughout the future starting from the
state & and following the policy 7. Q™ (Z, a) denotes the
expectation of total discounted reward throughout the
future starting from the state #, executing action a, and
then following the policy .
The optimal randomized explicit history-independent
policy 7* is defined as

7F = argmax V".
™
For the sake of simplicity, we denote the value function

for the optimal policy 7* as V* and call it the optimal
value function.

We now ask ourselves whether there exists a history-
dependent policy 7 such that V® > V*. In the case of
ezplicit policies, the answer is “no” due to the following
theorem.

Theorem 1 (Strauch (also in Puterman (1994)))

max V" = max V™
ﬁEHHR 71.EHMR

where TIHR and TIMR represent the set of explicit ran-
domized history-dependent policies and the set of ex-
plicit randomized history-independent policies, respec-
tively. a

A popular way to deal with the explosion in the size
of the representation of 7 is to aggregate the atomic
states that have same V™ (Z). Often, this is not enough,
so we go further and aggregate the states that have ap-
proximately same value until the size of the representa-
tion becomes tractable. Unfortunately, this breaks the
above theorem. It is easy to observe that by doing so,
the problem becomes a POMDP. This justifies our claim
that we should search in the space of history-dependent
policies instead of history-independent policies. In the
next section, we formally derive a special case in which a
history-dependent policy results in an exponential sav-
ing in size compared to a history-independent policy.

Finite Policy Graphs
(Conditional Plans)

A deterministic policy graph for a given Factored MDP
is a directed graph (V, £) where each vertex v € V is la-
beled with an action a € A, and each arc e € £ is labeled
with some boolean function f.(Z). Also for each ver-
tex, there is one and only one outgoing arc that satisfies
the associated boolean function. When the controller
is at a certain vertex, it executes the action associated
with the vertex. This implies a state transition in the
underlying MDP. Upon observing the new state &, the
controller takes the appropriate outgoing arc and ar-
rives at the destination vertex.

In this paper, we focus on stochastic policy graphs
in which the action choices and vertex transitions are
probabilistic. Further, we assume that all the labeled
boolean functions take only one of the n fluents as in-
put.

Definition 3 (Unary Stochastic Policy Graphs)
A unary stochastic policy graph is defined by the
following parameters.
e V is the set of vertices in the graph.
o £ is the set of directed edges in the graph.
e (v, a) is the probability of choosing action a in vertex

veV:

Y(v,a) = P(Ar = a|V, = v)

for all time steps t.

Figure 3: Influence diagram illustrating the policy
graph coupled with a Factored MDP.

o 7((v,7),x;, (v, 1)) is the joint probability of moving
from vertexr v € V and focusing on the fluent X; to
vertex v/ € V and focusing on the fluent X;/, after
observing r; € X;:

77((“7 i)v Ti, (Ulv Zl))

=PV =0 Lipr =1 Ve =0, = 1, Xi 141 = #4)
for all time steps t.

e 1z,(%) is the probability distribution for focusing on
the fluent X; at time step 0.
Nz, (i) = P(Zo = 1)
o 0y, (i, z;,v) is the probability distribution for the ini-
tial vertex vo conditioned on the event that the initial
focus is on the fluent X; and its value is xz;:

Uvu(i, X, U) = P(Vo = UlIo = i, Xi,O = :L‘Z)
O

Figure 3 shows the diagram of the policy graph. All
the dotted links represent the parameters of the policy.
There is a range of possible structures for the policy.
We can make the policy reactive in the sense that there
is no memory associated with the finite-state controller,
1; is fixed constant all the time, and the distribution on
a; is determined by z; ; only. HQL-type policies (Wier-
ing & Schmidhuber 1997), that consist of a sequence of
reactive policies, can be modeled as well, by having |V|
as large as the number of reactive policies and associ-
ating goal state and fluent index with the vertex in the
policy graph.

Now we might ask what kind of leverage we can get
by using this kind of history-dependent policies? Con-
sider a simple problem given as a Factored MDP shown
in Figure 4 and Figure 5. The task here is to determine
whether the majority of bits in a random n-bit vector is
set or not. The Factored MDP representation is com-
posed n + 2 variables, where X1q,..., X,, represent the
n-bit vector, Y represents the answer to the problem
(yes or no), and Z represents the phase of the task:

0 the answer is generated,
z € [1,2n]
2n the answer is guessed,

2n+ z,z > 1 the guess is verified with X, .

P the problem is generated,

t t+1 t+2 t+2n-1 t+2n

Figure 4: A simple counting task represented as a Fac-
tored MDP (problem generation stage). In this exam-
ple, k fluents among Xi,..., X, is set to 1 at the end
of the phase.

t+2n+1 t+3n-1

Figure 5: A simple counting task represented as a Fac-
tored MDP (answer guess and verification phase). In
this example, at time ¢ + 2n, the guess “yes” is fed into
the Factored MDP, and the reward of 1.0 will be given
at time ¢ + 3n if and only if —n/2 < —n+k < n/2.

The dynamics of the Factored MDP is described as fol-
lows:

[Time ¢] Y; is set to a random number number y; €
{1,n} and Z; is set to 0.

[Time t + 1 ~t+2n] For 1 < i < n, Xjsp2_1 is set
to one with probability min[y; ;42i—2/(n—i+1), 1] at
time ¢ 4+ 2¢ — 1. Y;19; is set t0 Yry2i—1 — T5 p42i—1. In
short, throughout the problem generation phase, the
MDP generates a random n-bit vector which has y;
bits set to 1, and Y serves as a counter keeping track
of how many bits to set.

[Time ¢ + 2n] An action is taken, which corresponds
to the guess whether the majority of Xy,..., X, is
set or not. 0 means the answer “no” and 1 means

“yeS” N

[Time ¢ + 2n+ 1] Yijany1 is set to aipan * (—n) +
L1,t42n-

[Time t +2n+2 ~¢+3n] For 2 < i < n, Yijonts I8
set t0 Yeyonti—1 + Ti4an4i—1. In short, throughout
the verification phase, the MDP counts the number
of bits set among X4, ..., X,.

[Time ¢ + 3n] If —n/2 < Yiy3, < n/2, the guess was
correct, so the reward of 1 is given. Otherwise, no
reward is given.

[Time ¢ + 3n + 1] The system gets back to the prob-
lem instance generation (time).

A history-independent policy represented as a tree
should be able to count the number of bits set among
X1,...,X,. It will, however, explode the size of the
tree. On the other hand, a history-dependent policy
with sufficient amount of memory (size of 2 in the above
case) can remember the answer. Hence, the latter won’t
explode.

Local Greedy Policy Search

Searching in the space of history-dependent policies
does not make the problem any easier. In this paper,
we use a local greedy search method based on Baird
and Moore’s VAPS algorithm (Baird & Moore 1999)
and its predecessor REINFORCE algorithm (Williams
1988). Tt is a trial-based, stochastic gradient descent of
a general error measure, and hence we can show that it
converges to a local optimum with probability 1. The
error measure we use in this paper is the expected cu-
mulative discounted reward:

W:E{Z’Y Itvat |I07

Assume that the problem is a goal-achievement task —
there exists an absorbing goal-state which the system
must be in as fast as possible. As soon as the system
reaches the goal-state, the system halts and assigns a
reward. In this case, we can write down our optimality

criterion as

=X ¥

T=0hreHr

(hr|Zo, m)e(hr), (1)

where Hr is the set of all trajectories that terminate at
time T, i.e.,

hT = [IC" Vo, iOa ag, 705 -« s LT, VT, iTa ar, IrT]

and e(hr) denotes the total error associated with tra-
jectory hr. We assume the total error € is additive in
the sense that
T
e(hr) =3 e(hr[0,1))

t=0

where e(h7[0,]) is an instantaneous error associated
with sequence prefix

hT[Oat] =

Among the many ways of defining e, we use TD(1)
error (Sutton & Barto 1998) which is

e(hr[0,4]) = —'re.

In this case, we note that our objective function (Equa-
tion 1) is exactly — By, therefore we try to minimize
Cr.

To illustrate the stochastic gradient descent algo-
rithm on Cr, we derive the gradient VO with respect
to the parameters of the policy graph. From Defini-
tion 3, the parameter space is {t, 1, nz,, v, }. Without
loss of generality, let w be any parameter of the policy
graph. Then we have

de(hr)
Z > [P(hrldo,n L

T=0hreHr (2)
OP(hr|Zo,)
hr)———=|.
+clhr) ow
Note that for our choice of ¢ the partial derivative of
e(hr) w.r.t. w is always 0. We now derive the partial
derivative of P(hp|Zo, 7) w.r.t. w. Since

[I07 V0,205 @05 705 « - - 5 Tty Uty Uty Oty rt]

P(hr|%o, m) =P(Zo)nz, (i0) 1V, (i0, %30, v0) ¥ (v0, a0)

T
H |:T(ft—17 at—1, ft)

t=1
D(ve1siem1), @0 (00, 0) (00, a0)]
we can rewrite Equation 2 as

Z Y Plhrldo,){e(hT)ZM

ow
T=0hr€Hr t=0

T . .
+ G(hT) Z d1ln n((ut—la Zt@—:})a Lits (lvtv Zt))

t=1
d1nnzg, (o)
Ow
v, (i0, Zi,0, v0)
Ow)

+ e(hr)

+e(hr)

The above equation suggests that the gradient is the
mean of

T
0l ,
ghr) = c(hr) Y %ﬁat)
t=0
T))
+ €(hT) Z a hl n((l’t—la /Lta—(j)a Ii,ta (Uta Zt))
t=1
d1Innz, (i)
L P
4 Oy, (io, 21,0, v0)
Ow

(3)
w.r.t. the distribution P(hp|Zo, w). Hence, stochas-
tic gradient descent of the error is done by repeatedly
sampling a trajectory hp and evaluating g(hr) and up-
dating the parameters of the policy graph.

It is important that we have non-zero probabilities
for all possible trajectories. One way to enforce this
condition is to use a Boltzmann distribution for the pa-
rameters of the policy graph:

6Q¢'(U7G)
n((v, i), zq, (v, 1)) = eQ"((“’“’x“('” ') |
T ’ Zv“ev i e@n((v),x:,(v",i"))

P(v,a) =

. Qnzy (i
)= S
" @y, (i)
v, (1, i, v) =

y 1
oy e

Throughout the experiments described in the next sec-
tion, we use above reparameterization.

Preliminary Experiments

In this section, we show some results from our prelimi-
nary experiments.

Figure 6 presents the learning curve of the policy
graph on modified version of a benchmark problem
for evaluating POMDP algorithms called the “shuttle
problem.” The original shuttle problem (Cassandra
1998) is given as a POMDP, where the task is driv-
ing a shuttle back and forth between a loading site and
an unloading site to deliver a package. The status of
whether the shuttle is loaded or not is hidden. For
our experiments, we modified the problem so that ev-
erything is observable — it is now composed of three
fluents, that represent the location of the shuttle, the
status of loaded or not, and the status of the package’s
arrival at the loading site, respectively. A reward of
1 is given every time the shuttle arrives at the load-
ing site with empty cargo and returns to the unloading
site with the package. With the discount rate of 0.9,
the optimal performance is around at 1.9. The graph
shows the average of 10 independent experiments each

18 F T
16

14 -

2 [/ .

08 |/ | i

06 .
04 L+ shuttle .

optimal --------
1

0.2 | L L

0 1000 2000 3000 4000

Figure 6: Performance on the modified shuttle problem.

40 T T T

35 E

5 Coffee Robot B
r optima --------
O 1 1 1
0 1000 2000 3000 4000

Figure 7: Performance on the Coffee Robot domain.

with 4000 gradient updates on a policy graph with 2
vertices.

Figure 7 shows the performance of the algorithm on
the toy coffee robot problem. It is a extended problem
from the simple example in Figure 1. When explicitly
enumerated (i.e. flattened out), the problem has 400
states. By using a policy graph with 2 vertices, we were
able to find a locally optimal policy within minutes.
The optimal performance is 37.49. The graph shows
the average of 10 independent experiments each with
4000 gradient updates. On average, the learned policy
graphs had performence around at 25. We expected to
learn a gradually better policy as we added more ver-
tices, but we ended up stuck at local optima with same
performance. The result is natural in some aspect that
the algorithm itself looks for local optima. However, in
contrary, we reported in another paper (Meuleau et al.
1999) gradual improvement as we allowed larger policy
graphs. We suspect that there are huge discrete jumps

0.24 T T

0.22

0.2

0.18

0.16

014 |

012 | Majority
L optimal --------

0.1 L L

0 1000 2000 3000

Figure 8: Performance on the Majority domain with 5
bits.

in the performance as the expressiveness of the policy
passes some threshold. The analyses on such intriguing
behaviour remain as future work.

Figure 8 shows the performance on the majority do-
main shown in Figure 4 and Figure 5. The task was to
determine the whether the majority of 5 bits are set or
not. When explicitly enumerated, the domain has 5632
states. Using 1-bit memory (2 state FSM), the stochas-
tic gradient descent algorithm converged to the optima.
If we were to use a stationary policy represented as
a decision tree, the most compact optimal policy will
have 2° leaves. Again, the performance graph shows
the average of 10 indepement experiments each with
3000 gradient updates.

Related Work

There is a large and growing literature on the effi-
cient representation and solution of problems involving
planning under uncertainty modeled as Markov deci-
sion processes (see (Boutilier, Dean, & Hanks 1999)
for a survey) that draws upon earlier work in oper-
ations research (see (Bertsekas 1987; Puterman 1994)
for overview). In particular, there has been much
work recently representing large MDPs using com-
pact, factored representations such as Bayesian net-
works (Boutilier, Dearden, & Goldszmidt 1995; Dean,
Givan, & Leach 1997; Dean, Givan, & Kim 1998;
Hauskrecht et al. 1998).

Roughly speaking, the computational complexity of
solving MDPs is polynomial in the size of the state
and action spaces (Littman, Dean, & Kaelbling 1995)
and the typical factored MDP has state and action
spaces exponential in the size of the compact repre-
sentation of the dynamics (the state-transition and re-
ward functions). Methods from reinforcement learn-
ing (see (Kaelbling, Littman, & Moore 1996; Sutton &
Barto 1998) for surveys) and function approximation
more generally (Bertsekas & Tsitsiklis 1996) have been

studied as means of avoiding the enumeration of states
and actions. These learning methods do not require the
use of an explicit model, instead requiring only a gen-
erative model or the ability to perform experiments in
the target environment (Kearns, Mansour, & Ng 1999).
Still, when available, explicit models can provide valu-
able information to assist in searching for optimal or
near optimal solutions.

The work described in this paper borrows from two
main threads of research besides the work on factored
representations. The first thread follows from the idea
that it is possible, even desirable in some cases, to
search in the space of policies instead of in the space of
value functions which is the basis for much of the work
involving dynamic programming. The second thread is
that it is possible to use gradient methods to search in
the space of policies or the space of value functions if
the parameterized form of these spaces is smooth and
differentiable.

Singh et al. (1994) investigate methods for learn-
ing without state estimation by searching in policy
space instead of searching for an optimal value function
and then constructing an optimal (but not necessar-
ily unique) policy from the optimal (but unique) value
function or a reasonable approximation thereof. Baird
and Moore (1999) introduce the VAPS (Value And Pol-
icy Search) family of algorithms that allow searching
in the space of policies or in the space of value func-
tions or in some combination of the two. Baird and
Moore’s work generalizes on and extends the work of
Williams (1992).

Hansen (1998) describes algorithms for solving
POMDPs by searching in the policy space of finite
memory controllers. Meuleau et al. (1999) combines
the idea of searching in an appropriately parameterized
policy space with the idea of using gradient based meth-
ods for reinforcement learning. Our work employs an
extension of the VAPS methodology to factored MDPs.

Conclusion

We have described a family of algorithms for solving
factored MDPs that works by searching in the space of
history-dependent policies, specifically finite-state con-
trollers, instead of the space of Markov policies. These
algorithms are designed to exploit problems in which
useful clues for decision making anticipate the actual
need for making decisions and these clues are relatively
easy to extract from the history of states and encode
in the local state of a controller. Since MDPs assume
full observability, all information necessary for select-
ing the optimal action is available encoded in the state
at the time it is needed; in some cases, however, this
information can be computationally difficult to decode
and hence the anticipatory clues can afford a significant
computational advantage.

This work builds on the work of Meuleau et al. (1999)
in solving POMDPs and further extends the work of
Baird and Moore (1999) to factored MDPs. We hope

to show that our approach and that of Meuleau et al.
can be combined to solve factored POMDPs for cases
in which a domain model is provided and provides some
insight into the underlying structure of the problem.

Acknowledgments We thank Leslie Pack Kaelbling
and Phil Klein for invaluable comments, Craig Boutilier
for sharing the Coffee Robot domain.

References

Baird, L., and Moore, A. 1999. Gradient descent for
general reinforcement learning. In Advances in Neural
Information Processing Systems 11. Cambridge, MA:
MIT Press.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-
Dynamic Programming. Belmont, Massachusetts:
Athena Scientific.

Bertsekas, D. P. 1987. Dynamic Programming: De-
terministic and Stochastic Models. Englewood Cliffs,
N.J.: Prentice-Hall.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision
theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence

Research 11:1-94.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Pro-

ceedings IJCAT 1/, 1104-1111. TJCATL.

Cassandra, A. R. 1998. Fzact and Approzimate Algo-
rithms for Partially Observable Markov Decision Pro-
cesses. Ph.D. Dissertation, Department of Computer
Science, Brown University.

Dean, T.; Givan, R.; and Kim, K.-E. 1998. Solving
planning problems with large state and action spaces.
In Fourth International Conference on Artificial Intel-
ligence Planning Systems.

Dean, T.; Givan, R.; and Leach, S. 1997. Model reduc-
tion techniques for computing approximately optimal
solutions for Markov decision processes. In Geiger, D.,
and Shenoy, P. P., eds., Thirteenth Conference on Un-
certainty in Artificial Intelligence. Morgan Kaufmann.

Hansen, E. A. 1998. Solving POMDPs by search-
ing in policy space. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence,

211-219.

Hauskrecht, M.; Meuleau, N.; Boutilier, C.; Kaelbling,
L. P.; and Dean, T. 1998. Hierarchical solution of
markov decision processes using macro-actions. In
Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, 220-229.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W.
1996. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4:237-285.

Kearns, M.; Mansour, Y.; and Ng, A. 1999. A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes. In Proceedings ILJCAI 16.
IJCATI.

Littman, M.; Dean, T.; and Kaelbling, L. 1995. On
the complexity of solving Markov decision problems.
In Eleventh Conference on Uncertainty in Artificial
Intelligence, 394-402.

Meuleau, N.; Peshkin, L.; Kim, K.-E.; and Kaelbling,
L. 1999. Learning finite-state controllers for partially
observable environments. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelli-
gence.

Puterman, M. L. 1994. Markov Decision Processes.

New York: John Wiley & Sons.
Singh, S.; Jaakkola, T.; and Jordan, M. 1994. Learn-

ing without state-estimation in partially observable
Markovian decision processes. In Proceedings of the
Eleventh Machine Learning Conference.

Sutton, R., and Barto, A. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, Massachusetts:
MIT Press.

Wiering, M., and Schmidhuber, J. 1997. HQ learning.
Adaptive Behavior 6(2):219-246.

Williams, R. J. 1988. Towards a theory of
reinforcement-learning connectionist systems. Tech-
nical Report NU-CCS-88-3, Northeastern University,
Boston, Massachusetts.

Williams, R. J. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning 8:229-256.

